The Siberian Storm Track Weakens the Warm Arctic–Cold Eurasia Pattern

Author:

Yang Minghao12ORCID,Li Yi12,Dong Wei3,Shi Weilai1,Yu Peilong12,Chen Xiong1

Affiliation:

1. a College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

2. b High Impact Weather Key Laboratory of the China Meteorological Administration, Changsha, China

3. c Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China

Abstract

Abstract With a particular focus on the Siberian storm track, this study provides new insights into variations in the warm Arctic–cold Eurasia (WACE) temperature anomaly pattern by using reanalysis data. The results show that the Siberian storm track has a significant out-of-phase relationship with both the WACE pattern and Ural blocking on the interannual time scale. The strengthened WACE pattern can weaken the Siberian storm track through a suppression of the low-level atmospheric baroclinicity over midlatitude Eurasia. The weakened Siberian storm track can contribute to the WACE pattern through feedback forcing from synoptic-scale eddies, which can also create favorable conditions for the development of Ural blocking. Composite temporal evolution reveals that the strongest cold Arctic–warm Eurasia pattern is preceded by the peak of the Siberian storm track. The Ural cyclonic circulation reaches its maximum amplitude on the peak day of the Siberian storm track strength and continues to persist for one day with the maximum amplitude due to the feedback forcing resulting from the Siberian storm track. On the intraseasonal time scale, the occurrence of the Siberian storm track activity can serve as an early indication of the diminished Ural blocking and WACE pattern. Significance Statement Because of the high impacts of the warm Arctic–cold Eurasia (WACE) pattern on public safety, socioeconomic development, and the economy, it is crucial to enhance our understanding of variations in the WACE pattern. This paper specifically investigates the impact of internal atmospheric variability on the WACE pattern, focusing on a pronounced negative correlation between the Siberian storm track and the WACE pattern. Daily composites also reveal that Siberian storm track activities can promote a strong cold Arctic–warm Eurasia pattern by maintaining the strength of the quasi-stationary Ural cyclonic circulation. As such, paying close attention to Siberian storm track activities may hold the promise to improve the prediction of the strength of the WACE pattern.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference75 articles.

1. A climatology of Northern Hemisphere blocking;Barriopedro, D.,2006

2. Storm tracks and climate change;Bengtsson, L.,2006

3. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere;Blackmon, M. L.,1976

4. Weakened evidence for mid-latitude impacts of Arctic warming;Blackport, R.,2020

5. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes;Blackport, R.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3