The Asymmetric Influence of the Two Types of El Niño and La Niña on Summer Rainfall over Southeast China

Author:

Karori Muhammad Afzaal1,Li Jianping2,Jin Fei-Fei3

Affiliation:

1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, and Pakistan Meteorological Department, Islamabad, Pakistan

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Department of Meteorology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract In this study, the authors demonstrate that the two types of El Niño–Southern Oscillation (ENSO) have asymmetric features with respect to the impact of their positive and negative phases on boreal summer rainfall over the Yangtze River Valley (YRV) and South China (SC). The relationship between rainfall over the YRV and the warm pool (WP) La Niña is positive and significant, whereas the relationship with the WP El Niño is not. In the case of the cold tongue (CT) ENSO, its positive phase has a positive influence, while there is no significant relationship with the negative phase. In contrast, rainfall over SC has a significant positive relationship with WP El Niño, but a nonsignificant relationship with WP La Niña. The positive phase of the CT ENSO has a significant negative influence on SC rainfall, while the negative phase has a nonsignificant impact. An asymmetric atmospheric response to the asymmetric sea surface temperature anomalies (SSTAs) was also observed in the lower troposphere. The location of the center of the anomalous circulations over the study region differs during the opposite phases of the two types of ENSO. This asymmetric response is likely to be linked to the different spatial patterns of the two types of El Niño and La Niña. Atmospheric general circulation models confirm the authors' analysis of the observed data. Numerical simulations show that the asymmetric response of the lower atmosphere is driven mainly by differing SSTA patterns in the equatorial Pacific Ocean.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3