Effect of Indian Ocean SST on Tibetan Plateau Precipitation in the Early Rainy Season

Author:

Chen Xiaoyang1ORCID,You Qinglong2

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China

2. Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, and State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

The onset of the South Asian summer monsoon (SASM) indicates the beginning of the rainy season in the South Asia region. It is not only critical for the local agriculture and animal husbandry but also important for water and life security. Precipitation in the early rainy season (May) increases rapidly and has a large interannual variability, especially in the Tibetan Plateau (TP) region. One of the starting mechanisms of the monsoon system is the land–sea thermal contrast (LSTC) between the Indian Ocean (IO) and South Asia region. Therefore, the IO can be considered as a crucial factor for the intensity of the monsoon system, as well as the TP precipitation. In this study, the relationships between IO sea surface temperature (SST) and TP precipitation on the interannual time scale are investigated. Correlation maps show that IO SST variability contains a portion that is independent from the tropical Pacific Ocean SST and is negatively correlated with the TP precipitation. Here the authors define an LSTC index to determine the thermal condition over the IO and South Asia region. The SASM reveals an out-of-phase relationship with LSTC between land and ocean, which means it would be suppressed by the enhanced LSTC. The daily data are used to further analyze the relationship between the SASM and TP precipitation in detail. Results show that the anomalous TP precipitation in May is mainly caused by the Bay of Bengal monsoon and that the Indian monsoon is responsible for the TP precipitation in June. More specifically, warmer SST enlarges the LSTC between the IO and South Asia region. The SASM is weaker than the mean state, resulting in less precipitation over the TP. In negative years the opposite occurs.

Funder

the National Key Research and Development Program of China

Jiangsu Natural Science Funds for Distinguished Young Scholar

the Six talent peaks project in Jiangsu Province

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Shuang-Chuang Individual and Team Award

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3