Interdecadal Change in the Covariability of the Tibetan Plateau and Indian Summer Precipitation and Associated Circulation Anomalies

Author:

Wei Xinchen1,Liu Ge12,Nan Sulan1,Qian Tingting1,Zhang Ting12,Mao Xin12,Feng Yuhan1,Zhou Yuwei1

Affiliation:

1. State Key Laboratory of Severe Weather, and Institute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China

2. Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

This study investigates the interdecadal change in the covariability between the Tibetan Plateau (TP) east–west dipole precipitation and Indian precipitation during summer and primarily explores the modulation of atmospheric circulation anomalies on the covariability. The results reveal that the western TP precipitation (WTPP), eastern TP precipitation (ETPP), and northwestern Indian precipitation (NWIP) have covariability, with an in-phase variation between the WTPP and NWIP and an out-of-phase variation between the WTPP and ETPP. Moreover, this covariability was unclear during 1981–2004 and became significant during 2005–2019, showing a clear interdecadal change. During 2005–2019, a thick geopotential height anomaly, which tilted slightly northward, governed the TP, forming upper- and lower-level coupled circulation anomalies (i.e., anomalous upper-level westerlies over the TP and lower-level southeasterlies and northeasterlies around the southern flank of the TP). As such, the upper- and lower-tropospheric circulation anomalies synergistically modulate the summer WTPP, ETPP, and NWIP, causing the covariability of summer precipitation over the TP and India during 2005–2019. The upper- or lower-level circulation anomalies cannot independently result in significant precipitation covariability. During 1981–2004, the upper- and lower-level circulation anomalies were not strongly coupled, which caused precipitation non-covariability. The sea surface temperature anomalies (SSTAs) in the western North Pacific (WNP) and tropical Atlantic (TA) may synergistically modulate the upper- and lower-level coupled circulation anomalies, contributing to the covariability of the WTPP, ETPP, and NWIP during 2005–2019. The modulation of the WNP and TA SSTs on the coupled circulation anomalies was weaker during 1981–2004, which was therefore not conducive to this precipitation covariability. This study may provide valuable insights into the characteristics and mechanisms of spatiotemporal variation in summer precipitation over the TP and its adjacent regions, thus offering scientific support for local water resource management, ecological environment protection, and social and economic development.

Funder

National Key Research and Development Program of China

Meteorological Joint Fund of the National Natural Science Foundation of China

Youth Innovation Team of China Meteorological Administration “Climate change and its impact in the Tibetan Plateau”

Basic Research Fund of CAMS

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3