Diagnosing Northern Hemisphere Jet Portrayal in 17 CMIP3 Global Climate Models: Twenty-First-Century Projections

Author:

Delcambre Sharon C.1,Lorenz David J.2,Vimont Daniel J.1,Martin Jonathan E.3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

2. Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

3. Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract The anthropogenic climate change impacts on the eddy–jet system include an intensified midlatitude jet stream and an elevated tropopause, as well as a poleward-shifted jet. While both responses are evident in phase 3 of the Coupled Model Intercomparison Project (CMIP3) ensemble mean twenty-first-century projections, uncertainty in the poleward shift response is large enough that even the sign of the shift is not consistent among all models, especially in the Northern Hemisphere. The present analysis finds that twenty-first-century projections of the ensemble mean zonal wind change at 300 hPa predict a weakening and poleward expansion of the Pacific jet and an overall expansion of the Atlantic jet. In contrast with the direct zonal mean climate change signal of increasing midlatitude upper-level winds, zonal winds are projected to decrease in the core of the Pacific and Atlantic jets, with increasing zonal winds located primarily in the jet exit regions and the meridional flanks of the jets. Uncertainties in SST changes from the twentieth century to the twenty-first century between models are shown to impact modeled Northern Hemisphere jet stream changes. In particular, El Niño–Southern Oscillation–like mean winter SST changes explain 30% of intermodel variance of midlatitude zonal wind compared to the 8% explained by the domain-averaged warming SST signal. This suggests that a reduction of uncertainty in the tropical Pacific SST response to global warming will significantly reduce uncertainty in the Northern Hemisphere zonal wind response to climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3