Affiliation:
1. Max Planck Institute for Meteorology, Hamburg, Germany
2. Max Planck Institute for Meteorology, and Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany
Abstract
Abstract
The existence and productivity of vegetation is the basis for food and energy supply in the Sahel. Past changes in climate and vegetation abundance have raised the question whether the region could become greener in the future as a result of higher CO2 levels. By analyzing three Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with dynamic vegetation, the authors demonstrate why an answer to this question remains elusive in contrast to more robust projections of vegetation cover in the extratropics. First, it depends on the location and the time scale whether vegetation expands or retreats. Until the end of the twenty-first century, the three models agree on a substantial greening in the central and eastern Sahel due to increased CO2 levels. This trend is reversed thereafter, and vegetation retreats in particular in the western Sahel because the beneficial effect of CO2 fertilization is short lived compared to climate change. Second, the vegetation cover changes are driven by different processes in different models (most importantly, precipitation change and CO2 fertilization). As these processes tend to oppose each other, the greening and browning trends are not a reliable result despite the apparent model agreement. The authors also find that the effect of vegetation dynamics on the surface energy balance crucially depends on the location. In contrast to the results of many previous studies, the Sahel appears as a hotspot where the physiological effects of CO2 can exert a cooling because vegetation structure and distribution overcompensate for the decreased stomatal conductance.
Publisher
American Meteorological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献