CO2-Induced Sahel Greening in Three CMIP5 Earth System Models

Author:

Bathiany Sebastian1,Claussen Martin2,Brovkin Victor1

Affiliation:

1. Max Planck Institute for Meteorology, Hamburg, Germany

2. Max Planck Institute for Meteorology, and Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, Hamburg, Germany

Abstract

Abstract The existence and productivity of vegetation is the basis for food and energy supply in the Sahel. Past changes in climate and vegetation abundance have raised the question whether the region could become greener in the future as a result of higher CO2 levels. By analyzing three Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with dynamic vegetation, the authors demonstrate why an answer to this question remains elusive in contrast to more robust projections of vegetation cover in the extratropics. First, it depends on the location and the time scale whether vegetation expands or retreats. Until the end of the twenty-first century, the three models agree on a substantial greening in the central and eastern Sahel due to increased CO2 levels. This trend is reversed thereafter, and vegetation retreats in particular in the western Sahel because the beneficial effect of CO2 fertilization is short lived compared to climate change. Second, the vegetation cover changes are driven by different processes in different models (most importantly, precipitation change and CO2 fertilization). As these processes tend to oppose each other, the greening and browning trends are not a reliable result despite the apparent model agreement. The authors also find that the effect of vegetation dynamics on the surface energy balance crucially depends on the location. In contrast to the results of many previous studies, the Sahel appears as a hotspot where the physiological effects of CO2 can exert a cooling because vegetation structure and distribution overcompensate for the decreased stomatal conductance.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3