Dominant Modes of Interannual Variability in Eurasian Surface Air Temperature during Boreal Spring

Author:

Chen Shangfeng1,Wu Renguang2,Liu Yong1

Affiliation:

1. Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Center for Monsoon System Research, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract This study investigates interannual variations of surface air temperature (SAT) over mid- and high latitudes of Eurasia during boreal spring and their association with snow, atmospheric circulation, and sea surface temperature (SST) changes. The leading mode of spring SAT variations is featured by same-sign anomalies over most regions. The second mode features a tripole anomaly pattern with anomalies over the central part opposite to those over the eastern and western parts of Eurasia. A diagnosis of surface heat flux anomalies suggests that snow change contributes partly to SAT anomalies in several regions mainly by modulating surface shortwave radiation but cannot explain SAT changes in other regions. Atmospheric circulation anomalies play an important role in spring SAT variability via wind-induced heat advection and cloud-induced surface radiation changes. Positive SAT anomalies are associated with anomalous westerly winds from the North Atlantic Ocean or with anomalous anticyclone and southerly winds. Negative SAT anomalies occur in regions of anomalous cyclone and northerly winds. Atmospheric circulation anomalies associated with the first mode have a close relationship to spring Arctic Oscillation (AO), indicating the impact of the AO on continental-scale spring SAT variations over the mid- and high latitudes of Eurasia. The atmospheric circulation anomalies associated with the second mode feature a wave pattern over the North Atlantic and Eurasia. Such a wave pattern is related to a tripole SST anomaly pattern in the North Atlantic Ocean, signifying the contribution of the North Atlantic Ocean state to the formation of a tripole SAT anomaly pattern over the mid- and high latitudes of Eurasia.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3