Changes in Spatiotemporal Precipitation Patterns in Changing Climate Conditions

Author:

Chang Won1,Stein Michael L.1,Wang Jiali2,Kotamarthi V. Rao2,Moyer Elisabeth J.3

Affiliation:

1. Department of Statistics, University of Chicago, Chicago, Illinois

2. Environmental Science Division, Argonne National Laboratory, Lemont, Illinois

3. Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

Abstract

Abstract Climate models robustly imply that some significant change in precipitation patterns will occur. Models consistently project that the intensity of individual precipitation events increases by approximately 6%–7% K−1, following the increase in atmospheric water content, but that total precipitation increases by a lesser amount (1%–2% K−1 in the global average in transient runs). Some other aspect of precipitation events must then change to compensate for this difference. The authors develop a new methodology for identifying individual rainstorms and studying their physical characteristics—including starting location, intensity, spatial extent, duration, and trajectory—that allows identifying that compensating mechanism. This technique is applied to precipitation over the contiguous United States from both radar-based data products and high-resolution model runs simulating 80 years of business-as-usual warming. In the model study the dominant compensating mechanism is a reduction of storm size. In summer, rainstorms become more intense but smaller; in winter, rainstorm shrinkage still dominates, but storms also become less numerous and shorter duration. These results imply that flood impacts from climate change will be less severe than would be expected from changes in precipitation intensity alone. However, these projected changes are smaller than model–observation biases, implying that the best means of incorporating them into impact assessments is via “data-driven simulations” that apply model-projected changes to observational data. The authors therefore develop a simulation algorithm that statistically describes model changes in precipitation characteristics and adjusts data accordingly, and they show that, especially for summertime precipitation, it outperforms simulation approaches that do not include spatial information.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3