Development of an Automated Classification Procedure for Rainfall Systems

Author:

Baldwin Michael E.1,Kain John S.1,Lakshmivarahan S.2

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. School of Computer Science, University of Oklahoma, Norman, Oklahoma

Abstract

An automated procedure for classifying rainfall systems (meso-α scale and larger) was developed using an operational analysis of hourly precipitation estimates from radar and rain gauge data. The development process followed two main phases: a training phase and a testing phase. First, 48 hand-selected cases were used to create a training dataset, from which a set of attributes related to morphological aspects of rainfall systems were extracted. A hierarchy of classes for rainfall systems, in which the systems are separated into general convective (heavy rain) and nonconvective (light rain) classes, was envisioned. At the next level of classification hierarchy, convective events are divided into linear and cellular subclasses, and nonconvective events belong to the stratiform subclass. Essential attributes of precipitating systems, related to the rainfall intensity and degree of linear organization, were determined during the training phase. The attributes related to the rainfall intensity were chosen to be the parameters of the gamma probability distribution fit to observed rainfall amount frequency distributions using the generalized method of moments. Attributes related to the degree of spatial continuity of each rainfall system were acquired from correlogram analysis. Rainfall systems were categorized using hierarchical cluster analysis experiments with various combinations of these attributes. The combination of attributes that resulted in the best match between cluster analysis results and an expert classification were used as the basis for an automated classification procedure. The development process shifted into the testing phase, where automated procedures for identifying and classifying rainfall systems were used to analyze every rainfall system in the contiguous 48 states during 2002. To allow for a feasible validation, a testing dataset was extracted from the 2002 data. The testing dataset consisted of 100 randomly selected rainfall systems larger than 40 000 km2 as identified by an automated identification system. This subset was shown to be representative of the full 2002 dataset. Finally, the automated classification procedure classified the testing dataset into stratiform, linear, and cellular classes with 85% accuracy, as compared to an expert classification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3