Potential Underestimation of Future Mei-Yu Rainfall with Coarse-Resolution Climate Models

Author:

Chen Xiaolong1,Wu Peili2,Roberts Malcolm J.2,Zhou Tianjun3

Affiliation:

1. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Met Office Hadley Centre, Exeter, United Kingdom

3. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Abstract

The amount of rainfall during June and July along the mei-yu front contributes about 45% to the total summer precipitation over the Yangtze River valley. How it will change under global warming is of great concern to the people of China because of its particular socioeconomic importance, but climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) show large uncertainties. This paper examines model resolution sensitivity and reports large differences in projected future summer rainfall along the mei-yu front between a low-resolution (Gaussian N96 grid, ~1.5° latitude–longitude) and a high-resolution (N216, ~0.7°) version of the Hadley Centre’s latest climate model, the HadGEM3 Global Coupled Configuration 2.0 (HadGEM3-GC2). The high-resolution model projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution model shows a decrease. A larger increase of projected mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble. These differences can be explained in terms of enhanced moist static energy advection and moisture convergence by stationary eddies in the high-resolution model. A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high, which is almost unchanged in N216 but retreats evidently eastward in N96, reducing the southwesterly flow and consequently moisture supply to the mei-yu front. Further increases in model resolution to resolve parameterized processes and detailed orographic features will hopefully reduce the spread in future climate projections.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3