Affiliation:
1. NASA Langley Research Center, Hampton, Virginia
2. Science System & Applications Inc., Hampton, Virginia
3. Science System & Applications Inc., Lanham, Maryland
4. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Abstract
Abstract
The estimate of surface irradiance on a global scale is possible through radiative transfer calculations using satellite-retrieved surface, cloud, and aerosol properties as input. Computed top-of-atmosphere (TOA) irradiances, however, do not necessarily agree with observation-based values, for example, from the Clouds and the Earth’s Radiant Energy System (CERES). This paper presents a method to determine surface irradiances using observational constraints of TOA irradiance from CERES. A Lagrange multiplier procedure is used to objectively adjust inputs based on their uncertainties such that the computed TOA irradiance is consistent with CERES-derived irradiance to within the uncertainty. These input adjustments are then used to determine surface irradiance adjustments. Observations by the Atmospheric Infrared Sounder (AIRS), Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) that are a part of the NASA A-Train constellation provide the uncertainty estimates. A comparison with surface observations from a number of sites shows that the bias [root-mean-square (RMS) difference] between computed and observed monthly mean irradiances calculated with 10 years of data is 4.7 (13.3) W m−2 for downward shortwave and −2.5 (7.1) W m−2 for downward longwave irradiances over ocean and −1.7 (7.8) W m−2 for downward shortwave and −1.0 (7.6) W m−2 for downward longwave irradiances over land. The bias and RMS error for the downward longwave and shortwave irradiances over ocean are decreased from those without constraint. Similarly, the bias and RMS error for downward longwave over land improves, although the constraint does not improve downward shortwave over land. This study demonstrates how synergetic use of multiple instruments (CERES, MODIS, CALIPSO, CloudSat, AIRS, and geostationary satellites) improves the accuracy of surface irradiance computations.
Publisher
American Meteorological Society
Reference52 articles.
1. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present);Adler;J. Hydrometeor.,2003
2. Constraints on future changes in climate and the hydrologic cycle;Allen;Nature,2002
3. Bloom, S. A.
, and Coauthors, 2005: Documentation and validation of the Goddard Earth Observing System (GEOS) data assimilation system, version 4. Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2005-104606, Vol. 26, 161 pp. [Available online at http://gmao.gsfc.nasa.gov/systems/geos4/.]
4. The PIRATA Program: History, accomplishments, and future directions;Bourlès;Bull. Amer. Meteor. Soc.,2008
5. AIRS: Improving weather forecasting and providing new data on greenhouse gases;Chahine;Bull. Amer. Meteor. Soc.,2006
Cited by
365 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献