Understanding the trends in reflected solar radiation: a latitude- and month-based perspective

Author:

Li Ruixue,Jian BidaORCID,Li Jiming,Wen Deyu,Zhang Lijie,Wang Yang,Wang YuanORCID

Abstract

Abstract. Averaging reflected solar radiation (RSR) over the whole year/hemisphere may mask the inter-month-/region-specific signals, limiting the investigation of spatiotemporal mechanisms and hemispheric symmetry projections. This drives us to explain RSR characteristics from latitude- and month-based perspectives. The study also explores whether longer-record radiation datasets can exhibit hemispheric symmetry of RSR to understand its temporal changes. Statistics indicate that the largest trends in decreasing RSR in the Northern and Southern hemispheres (NH and SH) occur in mid-spring and are dominated by clear-sky atmospheric and cloud components and cloud components only, respectively. The interannual negative trend in the NH RSR mainly derives from 30–50° N latitude zones, attributed to the decrease in the clear-sky atmospheric component caused by reduced anthropogenic sulfate emissions and spring/summer dust frequencies and reduced cloud fraction caused by increased sea surface temperature and an unstable marine boundary layer, thus leading to a reduced cloud component. In the SH, the significant RSR decreasing trend is widespread in 0–50° S latitude zones, which is closely related to the decrease in the cloud component caused by the decrease in cloud cover over the tropical western Pacific and Southern Ocean, partially compensated by the increase in the clear-sky atmospheric component. A new data evaluation system and an uncertainty analysis reveal that only the Advanced Very High Resolution Radiometer (AVHRR) outperforms in exhibiting the Cloud and Earth Radiant Energy System (CERES) hemispheric RSR differences due to offsetting biases among different components and achieves hemispheric RSR symmetry criteria within its uncertainty, making it suitable for studying long-term RSR hemispheric symmetry changes. Furthermore, the International Satellite Cloud Climatology Project (ISCCP) agrees well with CERES regarding hemispheric cloud component asymmetry and can help in the study of the corresponding long-term changes and mechanisms.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3