Energetics of Multidecadal Atlantic Ocean Variability

Author:

Dijkstra Henk A.1,Saenz Juan A.2,McC. Hogg Andrew3

Affiliation:

1. Institute for Marine and Atmospheric Research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, Netherlands

2. Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia

3. Research School of Earth Sciences and ARC Centre of Excellence for Climate System Science, The Australian National University, Canberra, Australian Capital Territory, Australia

Abstract

Abstract Oscillatory behavior of the Atlantic meridional overturning circulation (MOC) is thought to underlie Atlantic multidecadal climate variability. While the energy sources and sinks driving the mean MOC have received intense scrutiny over the last decade, the governing energetics of the modes of variability of the MOC have not been addressed to the same degree. This paper examines the energy conversion processes associated with this variability in an idealized North Atlantic Ocean model. In this model, the multidecadal variability arises through an instability associated with a so-called thermal Rossby mode, which involves westward propagation of temperature anomalies. Applying the available potential energy (APE) framework from stratified turbulence to the idealized ocean model simulations, the authors study the multidecadal variability from an energetics viewpoint. The analysis explains how the propagation of the temperature anomalies leads to changes in APE, which are subsequently converted into the kinetic energy changes associated with variations in the MOC. Thus, changes in the rate of generation of APE by surface buoyancy forcing provide the kinetic energy to sustain the multidecadal mode of variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3