Multiple Regimes and Low-Frequency Variability in the Quasi-Adiabatic Overturning Circulation

Author:

Wolfe Christopher L.1,Cessi Paola2

Affiliation:

1. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

AbstractWhen interior mixing is weak, the ocean can support an interhemispheric overturning circulation on isopycnals that outcrop in both the Northern Hemisphere and a high-latitude southern circumpolar channel. This overturning cell participates in a salt–advection feedback that counteracts the precipitation-induced surface freshening of the northern high latitudes. The net result is an increase in the range of isopycnals shared between the two hemispheres, which strengthens the overturning circulation. However, if precipitation in the Northern Hemisphere sufficiently exceeds that in the Southern Hemisphere, the overturning cell collapses and is replaced by a cell circulating in the opposite direction, whose southern end point is equatorward of the channel. This reversed cell is shallower and weaker than its forward counterpart and is maintained diffusively. For a limited range of parameters, freshwater hysteresis occurs and multiple overturning regimes are found for the same forcing. These multiple regimes are, by definition, unstable with regard to finite-amplitude disturbances, since a sufficiently large perturbation can affect a transition from one regime to the other. Both overturning regimes show pronounced, nearly periodic thermohaline variability on multidecadal and multicentennial time scales. The multidecadal oscillation is expressed in the North Hemisphere gyre and driven by a surface thermohaline instability. The multicentennial oscillation has the character of an interhemispheric loop oscillation. These oscillations mediate transitions between overturning regimes by providing an internal source of finite-amplitude disturbances. As the diffusivity is reduced, the reverse cell becomes weaker and thus less stable to a given perturbation amplitude. This causes the width of the hysteresis to decrease with decreasing diffusivity.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3