The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions

Author:

MacDougall Andrew H.1,Friedlingstein Pierre2

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

2. College of Engineering Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Abstract

Abstract The transient climate response to cumulative CO2 emissions (TCRE) is a useful metric of climate warming that directly relates the cause of climate change (cumulative carbon emissions) to the most used index of climate change (global mean near-surface temperature change). In this paper, analytical reasoning is used to investigate why TCRE is near constant over a range of cumulative emissions up to 2000 Pg of carbon. In addition, a climate model of intermediate complexity, forced with a constant flux of CO2 emissions, is used to explore the effect of terrestrial carbon cycle feedback strength on TCRE. The analysis reveals that TCRE emerges from the diminishing radiative forcing from CO2 per unit mass being compensated for by the diminishing ability of the ocean to take up heat and carbon. The relationship is maintained as long as the ocean uptake of carbon, which is simulated to be a function of the CO2 emissions rate, dominates changes in the airborne fraction of carbon. Strong terrestrial carbon cycle feedbacks have a dependence on the rate of carbon emission and, when present, lead to TRCE becoming rate dependent. Despite these feedbacks, TCRE remains roughly constant over the range of the representative concentration pathways and therefore maintains its primary utility as a metric of climate change.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3