Physical inconsistencies in the representation of the ocean heat-carbon nexus in simple climate models

Author:

Séférian RolandORCID,Bossy ThomasORCID,Gasser ThomasORCID,Nichols ZebedeeORCID,Dorheim KalynORCID,Su XuanmingORCID,Tsutsui JunichiORCID,Santana-Falcón YerayORCID

Abstract

AbstractThe Ocean Heat-Carbon Nexus, linking ocean heat and carbon uptake, is crucial for understanding climate responses to cumulative carbon dioxide (CO2) emissions and to net zero CO2 emissions. It results from a suite of processes involving the exchange of heat and carbon across the sea-air interface as well as their storage below the mixed layer and redistribution by the ocean large-scale circulation. The Ocean Heat and Carbon Nexus is assumed to be consistently represented across two modelling platforms used in the latest IPCC assessments: the Earth System Models (ESMs) and the Simple Climate Models (SCMs). However, our research shows significant deficiencies in state-of-the-art SCMs in replicating the ocean heat-carbon nexus of ESMs due to a crude treatment of the ocean thermal and carbon cycle coupling. With one SCM, we show that a more realistic heat-to-carbon uptake ratio exacerbates the projected warming by 0.1  °C in low overshoot scenarios and up to 0.2  °C in high overshoot scenarios. It is therefore critical to explore how SCMs’ physical inconsistencies, such as the representation of the ocean heat-carbon nexus, can affect future warming projections used in climate assessments, not just by SCMs in Working Group 3 but also by ESMs in Working Group 1 via SCM-driven emission-to-concentration translation.

Publisher

Springer Science and Business Media LLC

Reference57 articles.

1. Canadell, J. G. et al. Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge University Press, Cambridge, United Kingdom and New York, 2021).

2. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

3. Forster, P. et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge University Press, Cambridge, United Kingdom and New York, 2021).

4. von Schuckmann, K. et al. Heat stored in the Earth system 1960–2020: where does the energy go? Earth Syst. Sci. Data 15, 1675–1709 (2023).

5. Fox-Kemper, B. et al. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1362 (Cambridge University Press, Cambridge, United Kingdom and New York, 2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3