Reexamination of the Climatology and Variability of the Northwest Pacific Monsoon Trough Using a Daily Index

Author:

Feng Tao1,Yang Xiu-Qun2,Sun Xuguang2,Yang Dejian3,Chu Cuijiao2

Affiliation:

1. College of Oceanography, Hohai University, Nanjing, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

2. China Meteorological Administration–Nanjing University Joint Laboratory for Climate Prediction Studies, and Jiangsu Collaborative Innovation Center of Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing, China

3. College of Oceanography, Hohai University, Nanjing, China

Abstract

AbstractThis study developed a daily index to represent the northwest Pacific monsoon trough using westerly related cyclonic vorticity after removing tropical cyclones (TCs) from the reanalysis dataset. This index sufficiently captures the spatial and temporal variations in the monsoon trough. The use of this daily index revealed new features in the monsoon trough, including daily statistical characteristics, the active period over a year, and the main periodicity. A monsoon trough can be identified as active when the daily index is greater than 2.0 × 10−4 s−1. Active monsoon troughs occur during half of the summertime, and these is no monsoon trough on one-third of days, with the remaining days categorized as inactive. The most active month is August, in which approximately 20 days exhibit an active monsoon trough. Using this index, an active monsoon trough period, which is related to vigorous TC activity, was determined by identifying the establishment and decay dates for each year from 1979 to 2016. During most years, the active monsoon trough is established in mid-July and decays in late October, persisting for 3–5 months during the boreal summer. Moreover, spectral and wavelet analyses demonstrated the presence of intraseasonal, interannual, and interdecadal variabilities in the monsoon trough. The dominant periodicity for the interannual variability varied from 1.5 to 4 years in different decades. The relationship between the monsoon trough and TCs is also revealed using this index, showing that approximately 60% of TC formations were related to an active monsoon trough.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3