Interactions between Typhoon Megi (2010) and a Low-Frequency Monsoon Gyre

Author:

Bi Mingyu1,Li Tim2,Peng Melinda3,Shen Xinyong4

Affiliation:

1. International Laboratory on Climate and Environment Change, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China, and International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

2. International Pacific Research Center, and Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. Naval Research Laboratory, Monterey, California

4. International Laboratory on Climate and Environment Change, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

The ARW Model is used to investigate the sharp northward turn of Super Typhoon Megi (2010) after it moved westward and crossed the Philippines. The NCEP analyzed fields during this period are separated into a slowly varying background-flow component, a 10–60-day low-frequency component representing the monsoon gyre, and a 10-day high-pass-filtered component representing Megi and other synoptic-scale motion. It appears that the low-frequency (10–60 day) monsoon gyre interacted with Megi and affected its track. To investigate the effect of the low-frequency mode on Megi, numerical experiments were designed. In the control experiment, the total fields of the analysis are retained in the initial and boundary conditions, and the model is able to simulate Megi’s sharp northward turn. In the second experiment, the 10–60-day monsoon gyre mode is removed from the initial and lateral boundary fields, and Megi moves westward and slightly northwestward without turning north. Tracks of the relative positions between the Megi and the monsoon gyre centers suggest that a Fujiwhara effect may exist between the monsoon gyre and Megi. The northward turning of both Megi and the monsoon gyre occurred when the two centers were close to each other and the beta drift was enhanced. A vorticity budget analysis was conducted. It is noted that the Megi moves toward the maximum wavenumber-1 vorticity tendency. The sharp change of the maximum vorticity tendency direction before and after the track turning point is primarily attributed to the change of the horizontal vorticity advection. A further diagnosis shows that the steering of the vertically integrated low-frequency flow is crucial for the change of the horizontal advection tendency.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3