Extreme Precipitation in an Atmosphere General Circulation Model: Impact of Horizontal and Vertical Model Resolutions

Author:

Volosciuk Claudia1,Maraun Douglas1,Semenov Vladimir A.2,Park Wonsun1

Affiliation:

1. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, and A. M. Obukhov Institute of Atmospheric Physics, and P. P. Shirshov Institute of Oceanology, and Institute of Geography, Russian Academy of Sciences, Moscow, Russia

Abstract

Abstract To investigate the influence of atmospheric model resolution on the representation of daily precipitation extremes, ensemble simulations with the atmospheric general circulation model ECHAM5 at different horizontal (from T213 to T31 spectral truncation) and vertical (from L31 to L19) resolutions and forced with observed sea surface temperatures and sea ice concentrations have been carried out for January 1982–September 2010. All results have been compared with the highest resolution, which has been validated against observations. Resolution affects both the representation of physical processes and the averaging of precipitation across grid boxes. The latter, in particular, smooths out localized extreme events. These effects have been disentangled by averaging precipitation simulated at the highest resolution to the corresponding coarser grid. Extremes are represented by seasonal maxima, modeled by the generalized extreme value distribution. Effects of averaging and representation of physical processes vary with region and season. In the tropical summer hemisphere, extreme precipitation is reduced by up to 30% due to the averaging effect, and a further 65% owing to a coarser representation of physical processes. Toward middle to high latitudes, the latter effect reduces to 20%; in the winter hemisphere it vanishes toward the poles. A strong drop is found between T106 and T63 in the convection-dominated tropics. At the lowest resolution, Northern Hemisphere winter precipitation extremes, mainly caused by large-scale weather systems, are in general represented reasonably well. Coarser vertical resolution causes an equatorward shift of maximum extreme precipitation in the tropics. The impact of vertical resolution on mean precipitation is less pronounced; for horizontal resolution it is negligible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3