Added value of high-resolution regional climate model in simulating precipitation based on the changes in kinetic energy

Author:

Kim Gayoung,Kim Jineun,Cha Dong-HyunORCID

Abstract

AbstractAs the resolution of regional climate models has increased with the development of computing resources, Added Values (AVs) have always been a steady research topic. Most previous studies examined AVs qualitatively by comparing model results with different model resolutions qualitatively. This study tried to quantitatively investigate the AV of the high-resolution regional climate model for precipitation by analyzing the distribution of kinetic energy according to the different wavelengths at two different resolutions (36 km vs. 4 km), away from the traditional comparative analysis. In addition, the experiment that the low-resolution topography was forced to the high-resolution model was additionally conducted to separate the AVs associated with the topographic effect. Among the three experiments, two with the same topography and two with the exact horizontal resolution were compared separately. With identical topography, the high-resolution model simulated amplified precipitation intensity more than the low-resolution model in all quantiles, especially for extreme precipitation. The precipitation generated by mesoscale or smaller scale weather/climate events was also simulated with greater intensity in the high-resolution model. With the same grid spacing, the more detailed topography model showed AV for increasing spatial variability of precipitation, especially in mountainous regions. The AVs identified in this study were related to kinetic energy with wavelengths at the meso-beta or smaller scale. On the other hand, the kinetic energy above the meso-alpha or larger scale has no significant correlation with the AV of precipitation.

Funder

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3