Nonlinear Response of Atmospheric Blocking to Early Winter Barents–Kara Seas Warming: An Idealized Model Study

Author:

Chen Xiaodan12,Luo Dehai2,Wu Yutian3,Dunn-Sigouin Etienne45,Lu Jian6

Affiliation:

1. a Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai, China

2. b CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

3. c Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

4. d Geophysical Institute, University of Bergen, Bergen, Norway

5. e Bjerknes Centre for Climate Research, Bergen, Norway

6. f Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Abstract

AbstractWintertime Ural blocking (UB) has been shown to play an important role in cold extremes over Eurasia, and thus it is useful to investigate the impact of warming over the Barents–Kara Seas (BKS) on the behavior of Ural blocking. Here the response of UB to stepwise tropospheric warming over the BKS is examined using a dry dynamic core model. Nonlinear responses are found in the frequency and local persistence of UB. The frequency and local persistence of the UB increase with the strength of BKS warming in a less strong range and decrease with the further increase of BKS warming, which is linked to the UB propagation influenced by upstream background atmospheric circulation. For a weak BKS warming, the UB becomes more persistent due to its less westward movement associated with intensified upstream zonal wind and meridional potential vorticity gradient (PVy) in the North Atlantic mid-high latitudes, which corresponds to a negative height response over the North Atlantic high latitudes. When BKS warming is strong, a positive height response appears in the early winter stratosphere, and its subsequent downward propagation leads to a negative NAO response or increased Greenland blocking events, which reduces zonal wind and PVy in the high latitudes from North Atlantic to Europe, thus enhancing the westward propagation of UB and reducing its local persistence. The transition to the negative NAO phase and the retrogression of UB are not found when numerically suppressing the downward influence of weakened stratospheric polar vortex, suggesting a crucial role of the stratospheric pathway in nonlinear responses of UB to the early winter BKS warming.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3