Affiliation:
1. Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
Abstract
Abstract
Climate projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensemble show a decrease in interannual surface temperature variability over high latitudes with a large intermodel spread, in particular over the areas of sea ice retreat. Here relationships are found between the models’ present-day performance in sea ice–related metrics and future changes in temperature variability. These relations, so-called emergent constraints, can produce ensembles of models calibrated with present-day observations with a narrower spread across their members than across the full ensemble. The underlying assumption is that models in better agreement with observations or reanalyses in a carefully selected metric probably have a more realistic representation of local processes, and therefore are more reliable for projections. Thus, the reliability of this method depends on the availability of high-quality observations or reanalyses. This work represents a step toward formalization of the emergent constraints framework, as so far there is no consensus on how the constraints should be best implemented. The authors quantify the reduction in spread from emerging constraints for various metrics and their combinations, different emission scenarios, and seasons. Some of the general features of emerging constraints are discussed, and how to effectively aggregate information across metrics and seasons to achieve the largest reduction in model spread. It is demonstrated, based on the case of temperature variability, that a robust constraint can be obtained by combining relevant metrics across all seasons. Such a constraint results in a strongly reduced spread across model projections, which is consistent with a process understanding of variability changes due to sea ice retreat.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
American Meteorological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献