Change in Destructiveness of Landfalling Tropical Cyclones over China in Recent Decades

Author:

Li Richard C. Y.1,Zhou Wen1,Shun C. M.2,Lee Tsz Cheung2

Affiliation:

1. Guy Carpenter Asia-Pacific Climate Impact Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

2. Hong Kong Observatory, Hong Kong, China

Abstract

This study investigates changes in the destructiveness of landfalling tropical cyclones (TCs) over China during 1975–2014. Using four different TC datasets, it is found that TCs making landfall over east China (TCEC) have tended to be more destructive in recent decades, with a significant increase in the power dissipation index (PDI) after landfall. Both time series analysis and diagnostic analysis reveal that such an increase in the PDI of TCEC is associated with concomitant enhancement in landfall frequency as well as landfall intensity over east China. In contrast, changes in the PDI of TCs making landfall over south China (TCSC) are less apparent. Examination of different TC-related parameters shows no obvious changes in terms of landfall frequency, duration, and maximum intensity of TCSC. Diagnostic analysis further suggests that the reduction in TC occurrence over south China offsets considerably the positive effects of the intensity and the nonlinear term. Further examination of the environmental parameters reveals significant changes in the large-scale steering flow in recent decades, which is characterized by a prominent cyclonic circulation centered over southeast China. The southeasterly flows on the eastern flank of the cyclonic circulation tend to favor subsequent landfall of TCs over east China, resulting in an increase in landfall frequency, which contributes in part to the enhanced PDI of TCs over this region. Meanwhile, the slowing down of the mean translation speed of TCEC and the weakening of vertical wind shear coupled with warmer SSTs in the WNP tend to favor the intensification of TCEC, leading to an increase in intensity and hence the PDI of TCs over east China.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3