Affiliation:
1. Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao, China
2. Department of Atmospheric Sciences, University of Washington, Seattle, Washington
Abstract
Abstract
A framework for interpreting the Pacific decadal oscillation (PDO) and ENSO indices is presented. The two leading principal components (PCs) of sea surface temperature [SST; strictly speaking, the departure from globally averaged SST (SST*)] over the entire Pacific basin comprise a two-dimensional phase space. A linear combination of these pan-Pacific PCs corresponding to a +45° rotation (designated by P) is nearly identical to the PDO, the leading PC of Pacific SST* poleward of 20°N. Both P and the PDO index exhibit apparent “regime shifts” on the interdecadal time scale. The orthogonal axis (rotated by −45° and designated by T′) is highly correlated with conventional ENSO indices, but its spatial regression pattern is more equatorially focused. SST variability along these two rotated axes exhibits sharply contrasting power spectra, the former (i.e., P) suggestive of “red noise” on time scales longer than a decade and the latter (i.e., T′) exhibiting a prominent spectral peak around 3–5 years. Hence, orthogonal indices representative of the ENSO cycle and ENSO-like decadal variability can be generated without resorting to filtering in the time domain. The methodology used here is the same as that used by Takahashi et al. to quantify the diversity of equatorial SST patterns in ENSO; they rotated the two leading EOFs of tropical Pacific SST, whereas the two leading EOFs of pan-Pacific SST* are rotated here.
Publisher
American Meteorological Society
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献