An Analytical Model for Tropical Relative Humidity

Author:

Romps David M.1

Affiliation:

1. Department of Earth and Planetary Science, University of California, Berkeley, and Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

Abstract An analytical model is derived for tropical relative humidity using only the Clausius–Clapeyron relation, hydrostatic balance, and a bulk-plume water budget. This theory is constructed for radiative–convective equilibrium and compared against a cloud-resolving model. With some reinterpretation of variables, it can be applied more generally to the entire tropics. Given four variables—pressure, temperature, and the fractional entrainment and detrainment rates—the equations predict the relative humidity (RH) and the temperature lapse rate analytically. The RH is a simple ratio involving the fractional detrainment rate and the water-vapor lapse rate. When integrated upward in height, the equations give profiles of RH and temperature for a convecting atmosphere. The theory explains the magnitude of RH and the “C” shape of the tropospheric RH profile. It also predicts that RH is an invariant function of temperature as the atmosphere warms, and this behavior matches what has been seen in global climate models and what is demonstrated here with cloud-resolving simulations. Extending the theory to include the evaporation of hydrometeors, a lower bound is derived for the precipitation efficiency (PE) at each height: PE > 1 − RH. In a cloud-resolving simulation, this constraint is obeyed with the PE profile taking the shape of an inverted C shape.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I;Arakawa;J. Atmos. Sci.,1974

2. Greenhouse warming and the tropical water budget;Betts;Bull. Amer. Meteor. Soc.,1990

3. Detrainment in deep convection

4. An energy-balance analysis of deep convective self-aggregation above uniform SST;Bretherton;J. Atmos. Sci.,2005

5. Atmospheric radiative transfer modeling: A summary of the AER codes;Clough;J. Quant. Spectrosc. Radiat. Transfer,2005

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3