An Energy-Balance Analysis of Deep Convective Self-Aggregation above Uniform SST

Author:

Bretherton Christopher S.1,Blossey Peter N.1,Khairoutdinov Marat2

Affiliation:

1. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Abstract

Abstract The spatial organization of deep moist convection in radiative–convective equilibrium over a constant sea surface temperature is studied. A 100-day simulation is performed with a three-dimensional cloud-resolving model over a (576 km)2 domain with no ambient rotation and no mean wind. The convection self-aggregates within 10 days into quasi-stationary mesoscale patches of dry, subsiding and moist, rainy air columns. The patches ultimately merge into a single intensely convecting moist patch surrounded by a broad region of very dry subsiding air. The self-aggregation is analyzed as an instability of a horizontally homogeneous convecting atmosphere driven by convection–water vapor–radiation feedbacks that systematically dry the drier air columns and moisten the moister air columns. Column-integrated heat, water, and moist static energy budgets over (72 km)2 horizontal blocks show that this instability is primarily initiated by the reduced radiative cooling of air columns in which there is extensive anvil cirrus, augmented by enhanced surface latent and sensible heat fluxes under convectively active regions due to storm-induced gustiness. Mesoscale circulations intensify the later stages of self-aggregation by fluxing moist static energy from the dry to the moist regions. A simple mathematical model of the initial phase of self-aggregation is proposed based on the simulations. In accordance with this model, the self-aggregation can be suppressed by horizontally homogenizing the radiative cooling or surface fluxes. Lower-tropospheric wind shear leads to slightly slower and less pronounced self-aggregation into bands aligned along the shear vector. Self-aggregation is sensitive to the ice microphysical parameterization, which affects the location and extent of cirrus clouds and their radiative forcing. Self-aggregation is also sensitive to ambient Coriolis parameter f, and can induce spontaneous tropical cyclogenesis for large f. Inclusion of an interactive mixed-layer ocean slows but does not prevent self-aggregation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference21 articles.

1. Relationships between water vapor path and precipitation over the tropical oceans.;Bretherton;J. Climate,2004

2. Emanuel, K. A., and D.Nolan, 2004: Tropical cyclone activity and the global climate system. Proc. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., CD-ROM, 10A.2.

3. Radiative-convective equilibrium with explicit two-dimensional convection.;Held;J. Atmos. Sci.,1993

4. Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, result, uncertainties, and sensitivities.;Khairoutdinov;J. Atmos. Sci.,2003

5. The National Center for Atmospheric Research Community Climate Model (CCM3).;Kiehl;J. Climate,1998

Cited by 441 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3