Can a Regional Ocean–Atmosphere Coupled Model Improve the Simulation of the Interannual Variability of the Western North Pacific Summer Monsoon?

Author:

Zou Liwei1,Zhou Tianjun2

Affiliation:

1. LASG, Institute of Atmospheric Physics, and Graduate University of Chinese Academy of Sciences, Beijing, China

2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Abstract A flexible regional ocean–atmosphere–land system coupled model [Flexible Regional Ocean Atmosphere Land System (FROALS)] was developed through the Ocean Atmosphere Sea Ice Soil, version 3 (OASIS3), coupler to improve the simulation of the interannual variability of the western North Pacific summer monsoon (WNPSM). The regionally coupled model consists of a regional atmospheric model, the Regional Climate Model, version 3 (RegCM3), and a global climate ocean model, the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG)/Institute of Atmospheric Physics (IAP) Climate Ocean Model (LICOM). The impacts of local air–sea interaction on the simulation of the interannual variability of the WNPSM are investigated through regionally ocean–atmosphere coupled and uncoupled simulations, with a focus on El Niño’s decaying summer. Compared with the uncoupled simulation, the regionally coupled simulation exhibits improvements in both the climatology and the interannual variability of rainfall over the WNP. In El Niño’s decaying summer, the WNP is dominated by an anomalous anticyclone, less rainfall, and enhanced subsidence, which lead to increases in the downward shortwave radiation flux, thereby warming sea surface temperature (SST) anomalies. Thus, the ocean appears as a slave to atmospheric forcing. In the uncoupled simulation, however, the atmosphere is a slave to oceanic SST forcing, with the warm SST anomalies located east of the Philippines unrealistically producing excessive rainfall. In the regionally coupled run, the unrealistic positive rainfall anomalies and the associated atmospheric circulations east of the Philippines are significantly improved, highlighting the importance of air–sea coupling in the simulation of the interannual variability of the WNPSM. One limitation of the model is that the anomalous anticyclone over the WNP is weaker than the observations in both the regionally coupled and the uncoupled simulations. This results from the weaker simulated climatological summer rainfall intensity over the monsoon trough.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3