Moist Dynamical Linkage between the Equatorial Indian Ocean and the South Asian Monsoon Trough*

Author:

Annamalai H.1

Affiliation:

1. International Pacific Research Center, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract During boreal summer, both the monsoon trough and the equatorial Indian Ocean (EIO) receive intense climatological precipitation. At various time scales, EIO sea surface temperature (SST) and/or precipitation variations interact with rainfall along the trough. For instance, during July–August in strong Indian Ocean dipole/zonal mode (IODZM) years, EIO experiences below-normal rainfall while regions along the monsoon trough receive above-normal rainfall. A lack of spatial coherency between SST and precipitation variations is noted in both regions. This paper posits the hypothesis that interaction between equatorial waves and moist physics is important in determining precipitation anomalies over these regions and in setting up the teleconnection. The hypothesis is tested using a linear baroclinic model (LBM). IODZM-related SST anomalies derived from multicentury integrations of the Geophysical Fluid Dynamics Laboratory coupled model (GFDL CM2.1) are used to force the LBM. Consistent with observations and CM2.1 composites of strong IODZM events, steady-state LBM solutions simulate zonally oriented negative (positive) precipitation anomalies over the EIO (along the monsoon trough). To identify the processes simulated in the LBM, moisture and moist static energy budgets are examined. Over both regions, analyses reveal that moisture advection contributes the most to the LBM budget, with advection of climatological moisture by the anomalous wind being the principal factor. Specifically, in response to cold SST anomalies in the EIO, moist stability due to surface fluxes increases, giving rise to below-normal rainfall. These conditions produce anomalous anticyclonic circulation as a Rossby wave response in the lower troposphere. Over the central-eastern EIO, this anomalous circulation advects climatological air of lower moisture content from the subtropics. In addition, advection of anomalous moisture by both climatological and anomalous wind results in anomalous dry conditions over the entire EIO. In contrast, anomalous divergent circulations that emanate from the EIO advect climatological air of higher moisture content from the equatorial region, amplifying rainfall along the monsoon trough. Consequently, the two regions are connected by a thermally driven overturning meridional circulation. Budget diagnostics performed with CM2.1 composites and the ECMWF interim reanalysis for observed IODZM events support the hypothesis. The results here imply that in coupled models, realistic representation of the basic state and details of the moist processes are necessary for successful monsoon prediction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3