Responses of the Summertime Subtropical Anticyclones to Global Warming

Author:

He Chao1ORCID,Wu Bo2,Zou Liwei2,Zhou Tianjun3

Affiliation:

1. Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Institute for Environmental and Climate Research, Jinan University, Guangzhou, China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Abstract

Subtropical anticyclones dominate the subtropical ocean basins in summer. Using the multimodel output from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the future changes of the subtropical anticyclones as a response to global warming are investigated, based on the changes in subsidence, low-level divergence, and rotational wind. The subtropical anticyclones over the North Pacific, South Atlantic, and south Indian Ocean are projected to become weaker, whereas the North Atlantic subtropical anticyclone (NASA) intensifies, and the South Pacific subtropical anticyclone (SPSA) shows uncertainty but is likely to intensify. Diagnostic analyses and idealized simulations suggest that the projected changes in the subtropical anticyclones are well explained by the combined effect of increased tropospheric static stability and changes in diabatic heating. Increased static stability acts to reduce the intensity of all the subtropical anticyclones, through the positive mean advection of stratification change (MASC) over the subsidence regions of the subtropical anticyclones. The pattern of change in diabatic heating is dominated by latent heating associated with changes in precipitation, which is enhanced over the western North Pacific under the “richest get richer” mechanism but is reduced over subtropical North Atlantic and South Pacific due to a local minimum of SST warming amplitude. The change in the diabatic heating pattern substantially enhances the subtropical anticyclones over the North Atlantic and South Pacific but weakens the North Pacific subtropical anticyclone.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3