Spatial Patterns of Precipitation Change in CMIP5: Why the Rich Do Not Get Richer in the Tropics

Author:

Chadwick Robin1,Boutle Ian2,Martin Gill1

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

2. Met Office, Exeter, United Kingdom

Abstract

Abstract Changes in the patterns of tropical precipitation (P) and circulation are analyzed in Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs under the representative concentration pathway 8.5 (RCP8.5) scenario. A robust weakening of the tropical circulation is seen across models, associated with a divergence feedback that acts to reduce convection most in areas of largest climatological ascent. This is in contrast to the convergence feedback seen in interannual variability of tropical precipitation patterns. The residual pattern of convective mass-flux change is associated with shifts in convergence zones due to mechanisms such as SST gradient change, and this is often locally larger than the weakening due to the divergence feedback. A simple framework is constructed to separate precipitation change into components based on different mechanisms and to relate it directly to circulation change. While the tropical mean increase in precipitation is due to the residual between the positive thermodynamic change due to increased specific humidity and the decreased convective mass flux due to the weakening of the circulation, the spatial patterns of these two components largely cancel each other out. The rich-get-richer mechanism of greatest precipitation increases in ascent regions is almost negated by this cancellation, explaining why the spatial correlation between climatological P and the climate change anomaly ΔP is only 0.2 over the tropics for the CMIP5 multimodel mean. This leaves the spatial pattern of precipitation change to be dominated by the component associated with shifts in convergence zones, both in the multimodel mean and intermodel uncertainty, with the component due to relative humidity change also becoming important over land.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3