Affiliation:
1. Met Office Hadley Centre, Exeter, United Kingdom
2. Met Office, Exeter, United Kingdom
Abstract
Abstract
Changes in the patterns of tropical precipitation (P) and circulation are analyzed in Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs under the representative concentration pathway 8.5 (RCP8.5) scenario. A robust weakening of the tropical circulation is seen across models, associated with a divergence feedback that acts to reduce convection most in areas of largest climatological ascent. This is in contrast to the convergence feedback seen in interannual variability of tropical precipitation patterns. The residual pattern of convective mass-flux change is associated with shifts in convergence zones due to mechanisms such as SST gradient change, and this is often locally larger than the weakening due to the divergence feedback.
A simple framework is constructed to separate precipitation change into components based on different mechanisms and to relate it directly to circulation change. While the tropical mean increase in precipitation is due to the residual between the positive thermodynamic change due to increased specific humidity and the decreased convective mass flux due to the weakening of the circulation, the spatial patterns of these two components largely cancel each other out. The rich-get-richer mechanism of greatest precipitation increases in ascent regions is almost negated by this cancellation, explaining why the spatial correlation between climatological P and the climate change anomaly ΔP is only 0.2 over the tropics for the CMIP5 multimodel mean. This leaves the spatial pattern of precipitation change to be dominated by the component associated with shifts in convergence zones, both in the multimodel mean and intermodel uncertainty, with the component due to relative humidity change also becoming important over land.
Publisher
American Meteorological Society
Cited by
316 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献