Trend of Surface Air Temperature in Eastern China and Associated Large-Scale Climate Variability over the Last 100 Years

Author:

Zhao Ping1,Jones Phil2,Cao Lijuan3,Yan Zhongwei4,Zha Shuyao5,Zhu Yani3,Yu Yu3,Tang Guoli3

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

3. National Meteorological Information Center, Beijing, China

4. TEA-RCE, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

5. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Abstract

Abstract Using the reconstructed continuous and homogenized surface air temperature (SAT) series for 16 cities across eastern China (where the greatest industrial developments in China have taken place) back to the nineteenth century, the authors examine linear trends of SAT. The regional-mean SAT over eastern China shows a warming trend of 1.52°C (100 yr)−1 during 1909–2010. It mainly occurred in the past 4 decades and this agrees well with the variability in another SAT series developed from a much denser station network (over 400 sites) across this part of China since 1951. This study collects population data for 245 sites (from these 400+ locations) and split these into five equally sized groups based on population size. Comparison of these five groups across different durations from 30 to 60 yr in length indicates that differences in population only account for between 9% and 24% of the warming since 1951. To show that a larger urbanization impact is very unlikely, the study additionally determines how much can be explained by some large-scale climate indices. Anomalies of large-scale climate indices such as the tropical Indian Ocean SST and the Siberian atmospheric circulation systems account for at least 80% of the total warming trends.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3