Quantifying the Spatio-Temporal Pattern Differences in Climate Change before and after the Turning Year in Southwest China over the Past 120 Years

Author:

Wang Meng1ORCID,Wang Shouyan2,An Zhengfeng3ORCID

Affiliation:

1. Chaozhou Environmental Information Center, Chaozhou 521011, China

2. School of Life Science and Engineering, Handan University, Handan 056005, China

3. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada

Abstract

In conjunction with Earth’s ongoing global warming, the Southwest China (SWC) region has become a fascinating case study on the control of local climate change. Moreover, an entire period of climate change may partially mask the patterns in some stages. Therefore, in this research, we investigated the spatial patterns of the significant turning years of climatic factor change, and determined the heterogeneity of the spatial patterns of climate change before and after the significant turning years. We used the long time-series of the CRU datasets (CRU_TS4.02) from 1901 to 2017 with a piecewise linear regression model to explore the significant turning-year distribution characteristics of inter-annual and inter-seasonal climate factor changes, and further describe and quantize the differences in the spatio-temporal patterns of climate factors before and after the significant turning years on the grid scale in SWC. Overall, the trends in temperature and precipitation factors in SWC were segmented over the last 120 years, with significant turning years with different regional and stepwise characteristics. In terms of timing, temperature and precipitation factors changed significantly in 1954 and 1928, respectively, and overall temporal variability (0.04 °C/(10 a) (p < 0.05), −0.48 mm/(10 a)) masked the magnitude or direction of variability (0.13 °C/(10 a) and 0.16 °C/(10 a) both at the level of p < 0.05 before the turning year, 19.56 mm/(10 a) (p < 0.05) and 1.19 mm/(10 a) after the turning year) around the watershed years. Spatially, the significant turning years were concentrated in the periods 1940–1993 (temperature) and 1910–2008 (precipitation), and the distribution pattern of the turning years was patchy and concentrated. The turning years of temperature factors were gradually delayed from east to west, and the variability of climate factors before and after the turning years exhibited significant shifts in location (e.g., temperature decreased from southeast to northwest before the turning year and increased after the turning year). After the turning year, the warming variability of the temperature factor increased, while the increasing variability of the precipitation factor decreased. Further integrated analysis revealed that the increase in variability of the climate factor after the turning year was mainly due to the increase in winter and autumn variability (0.05 °C/(10 a), 7.30 mm/(10 a) in autumn; and 0.12 °C/(10 a), 1.97 mm/(10 a) in winter). To the extent that this study provides a necessary academic foundation for efficiently unveiling the spatio-temporal variability properties of climate factors against the background of modern global climate change, more attention should be paid to the location and phase of the study.

Funder

Chaozhou Special Fund for Human Resource Development

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference108 articles.

1. IPCC (2013). Climate Change 2013: The Physical Science Basis: Summary for Policymakers, Cambridge University Press.

2. IPCC (2018). Special Report on Global Warming of 1.5 °C, Cambridge University Press.

3. IPCC (2021). Contribution of Working Group, I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. Forcing, feedback and internal variability in global temperature trends;Marotzke;Nature,2015

5. Global warming will happen faster than we think;Xu;Nature,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3