Controls of Global Snow under a Changed Climate

Author:

Kapnick Sarah B.1,Delworth Thomas L.2

Affiliation:

1. Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

2. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

Abstract This study assesses the ability of a newly developed high-resolution coupled model from the Geophysical Fluid Dynamics Laboratory to simulate the cold-season hydroclimate in the present climate and examines its response to climate change forcing. Output is assessed from a 280-yr control simulation that is based on 1990 atmospheric composition and an idealized 140-yr future simulation in which atmospheric carbon dioxide increases at 1% yr−1 until doubling in year 70 and then remains constant. When compared with a low-resolution model, the high-resolution model is found to better represent the geographic distribution of snow variables in the present climate. In response to idealized radiative forcing changes, both models produce similar global-scale responses in which global-mean temperature and total precipitation increase while snowfall decreases. Zonally, snowfall tends to decrease in the low to midlatitudes and increase in the mid- to high latitudes. At the regional scale, the high- and low-resolution models sometimes diverge in the sign of projected snowfall changes; the high-resolution model exhibits future increases in a few select high-altitude regions, notably the northwestern Himalaya region and small regions in the Andes and southwestern Yukon, Canada. Despite such local signals, there is an almost universal reduction in snowfall as a percent of total precipitation in both models. By using a simple multivariate model, temperature is shown to drive these trends by decreasing snowfall almost everywhere while precipitation increases snowfall in the high altitudes and mid- to high latitudes. Mountainous regions of snowfall increases in the high-resolution model exhibit a unique dominance of the positive contribution from precipitation over temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3