Illuminating Snow Droughts: The Future of Western United States Snowpack in the SPEAR Large Ensemble

Author:

Schmitt Julian123ORCID,Tseng Kai‐Chih245ORCID,Hughes Mimi3ORCID,Johnson Nathaniel C.2ORCID

Affiliation:

1. California Institute of Technology Pasadena CA USA

2. Geophysical Fluid Dynamics Laboratory Princeton NJ USA

3. Physical Sciences Laboratory Boulder CO USA

4. Princeton University Princeton NJ USA

5. Now at Department of Atmospheric Sciences National Taiwan University Taipei Taiwan

Abstract

AbstractSeasonal snowpack in the Western United States (WUS) is vital for meeting summer hydrological demands, reducing the intensity and frequency of wildfires, and supporting snow‐tourism economies. While the frequency and severity of snow droughts (SD), that is, anomalously low snowpacks, are expected to increase under continued global warming, the uncertainty from internal climate variability remains challenging to quantify with observations alone. Using a 30‐member large ensemble from a state‐of‐the‐art global climate model, the Seamless System for Prediction and EArth System Research (SPEAR), and an observations‐based data set, we find WUS SD changes are already significant. By 2100, SPEAR projects SDs to be nearly 9 times more frequent under shared socioeconomic pathway 5‐8.5 (SSP5‐8.5) and 5 times more frequent under SSP2‐4.5, compared to a 1921–2011 average. By investigating the influence of the two primary drivers of SD, temperature and precipitation amount, we find the average WUS SD will become warmer and wetter. To assess how these changes affect future summer water availability, we track late winter and spring snowpack across WUS watersheds, finding differences in the onset time of a “no‐snow” threshold between regions and large internal variability within the ensemble that are both on the order of decades. We attribute the inter‐regional variability to differences in the regions' mean winter temperature and the intra‐regional variability to irreducible internal climate variability which is not well‐explained by temperature variations alone. Despite strong scenario forcing, internal climate variability will continue to drive variations in SD and no‐snow conditions through 2100.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation Graduate Research Fellowship Program

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3