Subseasonal Variability of Rossby Wave Breaking and Impacts on Tropical Cyclones during the North Atlantic Warm Season

Author:

Li Weiwei1,Wang Zhuo1,Zhang Gan1,Peng Melinda S.2,Benjamin Stanley G.3,Zhao Ming4

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

2. CSRA/Naval Research Laboratory, Monterey, California

3. NOAA/Earth System Research Laboratory, Boulder, Colorado

4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Abstract

This study investigates the subseasonal variability of anticyclonic Rossby wave breaking (AWB) and its impacts on atmospheric circulations and tropical cyclones (TCs) over the North Atlantic in the warm season from 1985 to 2013. Significant anomalies in sea level pressure, tropospheric wind, and humidity fields are found over the tropical–subtropical Atlantic within 8 days of an AWB activity peak. Such anomalies may lead to suppressed TC activity on the subseasonal time scale, but a significant negative correlation between the subseasonal variability of AWB and Atlantic basinwide TC activity does not exist every year, likely due to the modulation of TCs by other factors. It is also found that AWB occurrence may be modulated by the Madden–Julian oscillation (MJO). In particular, AWB occurrence over the tropical–subtropical west Atlantic is reduced in phases 2 and 3 and enhanced in phases 6 and 7 based on the Real-Time Multivariate MJO (RMM) index. The impacts of AWB on the predictive skill of Atlantic TCs are examined using the Global Ensemble Forecasting System (GEFS) reforecasts with a forecast lead time up to 2 weeks. The hit rate of tropical cyclogenesis during active AWB episodes is lower than the long-term-mean hit rate, and the GEFS is less skillful in capturing the variations of weekly TC activity during the years of enhanced AWB activity. The lower predictability of TCs is consistent with the lower predictability of environmental variables (such as vertical wind shear, moisture, and low-level vorticity) under the extratropical influence.

Funder

National Oceanic and Atmospheric Administration

Office of Naval Research

University of Illinois at Urbana-Champaign

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3