ECMWF Ensemble Forecasts of Six Tropical Cyclones That Formed during a Long-Lasting Rossby Wave Breaking Event in the Western North Pacific

Author:

Elsberry Russell L.12,Tsai Hsiao-Chung3ORCID,Chin Wei-Chia4,Marchok Timothy P.5ORCID

Affiliation:

1. Lyda Hill Institute for Human Resilience, University of Colorado, Colorado Springs, CO 80918, USA

2. Department of Meteorology, Naval Postgraduate School, Monterey, CA 93944, USA

3. Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 291301, Taiwan

4. Hsinchu Management Office, Irrigation Agency, Ministry of Agriculture, Zhubei City, Hsinchu County 302, Taiwan

5. NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA

Abstract

The ECMWF‘s ensemble (ECEPS) predictions are documented for the lifecycles of six tropical cyclones (TCs) that formed during a long-lasting Rossby wave breaking event in the western North Pacific. All six TC tracks started between 20° N and 25° N, and between 136° E and 160° E. All five typhoons recurved north of 30° N, and the three typhoons that did not make landfall had long tracks to 50° N and beyond. The ECEPS weighted mean vector motion track forecasts from pre-formation onward are quite accurate, with track forecast spreads that are primarily related to initial position uncertainties. The ECEPS intensity forecasts have been validated relative to the Joint Typhoon Warning Center (JTWC) Working Best Track (WBT) intensities (when available). The key results for Tokage (11 W) were the ECEPS forecasts of the intensification to a peak intensity of 100 kt, and then a rapid decay as a cold-core cyclone. For Hinnamnor (12 W), the key result was the ECEPS intensity forecasts during the post-extratropical transition period when Hinnamnor was rapidly translating poleward through the Japan Sea. For Muifa (14 W), the key advantage of the ECEPS was that intensity guidance was provided for longer periods than the JTWC 5-day forecast. The most intriguing aspect of the ECEPS forecasts for post-Merbok (15 W) was its prediction of a transition to an intense, warm-core vortex after Merbok had moved beyond 50° N and was headed toward the Aleutian Islands. The most disappointing result was that the ECEPS over-predicted the slow intensification rate of Nanmadol (16 W) until the time-to-typhoon (T2TY), but then failed to predict the large rapid intensification (RI) following the T2TY. The tentative conclusion is that the ECEPS model‘s physics are not capable of predicting the inner-core spin-up rates when a small inner-core vortex is undergoing large RI.

Funder

NOAA OAR Office of Weather and Air Quality

Office of Naval Research

Taiwan National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3