Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets

Author:

Boer G. J.1,Arora V. K.1

Affiliation:

1. Canadian Centre for Climate Modelling and Analysis, Victoria, British Columbia, Canada

Abstract

Abstract Emissions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. This behavior is characterized in terms of carbon–concentration and carbon–climate feedback parameters. The results of this study include 1) the extension of the direct carbon feedback formalism of Boer and Arora to include results from radiatively coupled simulations, as well as those from the biogeochemically coupled and fully coupled simulations used in earlier analyses; 2) a brief analysis of the relationship between this formalism and the integrated feedback formalism of Friedlingstein et al.; 3) the feedback analysis of simulations based on each of the representative concentration pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5; 4) a comparison of the effects of specifying atmospheric CO2 concentrations or CO2 emissions; and 5) the quantification of the relative importance of the two feedback mechanisms in terms of their cumulative contribution to the change in atmospheric CO2. Feedback results are broadly in agreement with earlier studies in that carbon–concentration feedback is negative for the atmosphere and carbon–climate feedback is positive. However, the magnitude and evolution of feedback behavior depends on the formalism employed, the scenario considered, and the specification of CO2 from emissions or as atmospheric concentrations. Both feedback parameters can differ by factors of two or more, depending on the scenario and on the specification of CO2 emissions or concentrations. While feedback results are qualitatively useful and illustrative of carbon budget behavior, they apply quantitatively to particular scenarios and cases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3