A review of the major drivers of the terrestrial carbon uptake: model-based assessments, consensus, and uncertainties

Author:

Tharammal ThejnaORCID,Bala Govindasamy,Devaraju Narayanappa,Nemani Ramakrishna

Abstract

Abstract Terrestrial and oceanic carbon sinks together sequester >50% of the anthropogenic emissions, and the major uncertainty in the global carbon budget is related to the terrestrial carbon cycle. Hence, it is important to understand the major drivers of the land carbon uptake to make informed decisions on climate change mitigation policies. In this paper, we assess the major drivers of the land carbon uptake—CO2 fertilization, nitrogen deposition, climate change, and land use/land cover changes (LULCC)—from existing literature for the historical period and future scenarios, focusing on the results from fifth Coupled Models Intercomparison Project (CMIP5). The existing literature shows that the LULCC fluxes have led to a decline in the terrestrial carbon stocks during the historical period, despite positive contributions from CO2 fertilization and nitrogen deposition. However, several studies find increases in the land carbon sink in recent decades and suggest that CO2 fertilization is the primary driver (up to 85%) of this increase followed by nitrogen deposition (∼10%–20%). For the 21st century, terrestrial carbon stocks are projected to increase in the majority of CMIP5 simulations under the representative concentration pathway 2.6 (RCP2.6), RCP4.5, and RCP8.5 scenarios, mainly due to CO2 fertilization. These projections indicate that the effects of nitrogen deposition in future scenarios are small (∼2%–10%), and climate warming would lead to a loss of land carbon. The vast majority of the studies consider the effects of only one or two of the drivers, impairing comprehensive assessments of the relative contributions of the drivers. Further, the broad range in magnitudes and scenario/model dependence of the sensitivity factors pose challenges in unambiguous projections of land carbon uptake. Improved representation of processes such as LULCC, fires, nutrient limitation and permafrost thawing in the models are necessary to constrain the present-day carbon cycle and for more accurate future projections.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3