Subseasonal Analysis of Precipitation Variability in the Blue Nile River Basin

Author:

Berhane Fisseha1,Zaitchik Benjamin1,Dezfuli Amin1

Affiliation:

1. Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland

Abstract

Abstract The Ethiopian portion of the Blue Nile River basin is subject to significant interannual variability in precipitation. As this variability has implications for local food security and transboundary water resources, numerous studies have been directed at improved understanding and, potentially, predictability of the Blue Nile rainy season (June–September) precipitation. Taken collectively, these studies present a wide range of large-scale drivers associated with precipitation variability in the Blue Nile: El Niño–Southern Oscillation (ENSO), the Indian summer monsoon, sea level pressure (SLP) anomalies over the Arabian Peninsula and Gulf of Guinea, the quasi-biennial oscillation (QBO), and dynamics of the tropical easterly jet (TEJ) and African easterly jet (AEJ) have all been emphasized to varying degrees. This study aims to reconcile these diverse analyses by evaluating teleconnection patterns and potential mechanisms of association on the subseasonal scale. It is found that associations with the TEJ, Pacific modes of variability, and the Indian monsoon are strongest in the late rainy season. Mid–rainy season precipitation (July and August) shows mixed associations with Pacific/Indian Ocean variability and Atlantic Ocean indices, along with connections to regional pressure patterns and the AEJ. June precipitation is negatively correlated with SLP over the equatorial Atlantic and upper-tropospheric geopotential height. June and July precipitation show little significant correlation with the sea surface temperature over the equatorial Pacific Ocean. The observed intraseasonal evolution of teleconnections across the rainy season indicates that subseasonal analysis is required to advance understanding and prediction of Blue Nile precipitation variability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3