Interannual Variability and Ensemble Forecast of Upper Blue Nile Basin Kiremt Season Precipitation

Author:

Block Paul1,Rajagopalan Balaji2

Affiliation:

1. Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado

2. Department of Civil, Environmental, and Architectural Engineering, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract Ethiopian agriculture and Nile River flows are heavily dependent upon the Kiremt season (June–September) precipitation in the upper Blue Nile basin, as a means of rain-fed irrigation and streamflow contribution, respectively. Climate diagnostics suggest that the El Niño–Southern Oscillation phenomenon is a main driver of interannual variability of seasonal precipitation in the basin. One-season (March–May) lead predictors of the seasonal precipitation are identified from the large-scale ocean–atmosphere–land system, including sea level pressures, sea surface temperatures, geopotential height, air temperature, and the Palmer Drought Severity Index. A nonparametric approach based on local polynomial regression is proposed for generating ensemble forecasts. The method is data driven, easy to implement, and provides a flexible framework able to capture any arbitrary features (linear or nonlinear) present in the data, as compared to traditional linear regression. The best subset of predictors, as determined by the generalized cross-validation (GCV) criteria, is selected from the suite of potential large-scale predictors. A simple technique for disaggregating the seasonal precipitation forecasts into monthly forecasts is also provided. Cross-validated forecasts indicate significant skill in comparison to climatological forecasts, as currently utilized by the Ethiopian National Meteorological Services Agency. This ensemble forecasting framework can serve as a useful tool for water resources planning and management within the basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3