Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia

Author:

Ayalew Ayenew D.1ORCID,Wagner Paul D.1,Tigabu Tibebe B.2,Sahlu Dejene3,Fohrer Nicola1

Affiliation:

1. a Department of Hydrology and Water Resources Management, Christian-Albrechts-University, Kiel, Germany

2. b Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA

3. c Institute of Disaster Risk Management and Food Security Studies, Bahir Dar University, Bahir Dar, Ethiopia

Abstract

Abstract Due to the rapid socio-economic development in the Ethiopian Rift Valley basin, the pressures on water resources are increasing. To understand the change of spatio-temporal water fluxes, the hydrologic model SWAT+ (Soil and Water Assessment Tool+) was applied to five selected watersheds within the basin. With regards to the objective functions, Kling–Gupta efficiency (KGE: 0.68–0.84), the Nash–Sutcliffe efficiency (NSE: 0.61–0.73), percent bias (PBIAS: −3.4 to 1.4), and RMSE-observations standard deviation ratio (RSR: 0.52–0.69), the SWAT+ model performed very well for daily streamflow in all watersheds. The change in water balance components indicated a considerable spatial variation of water fluxes in the watersheds. Precipitation, evapotranspiration, and infiltration have generally decreased, but surface runoff has increased in the interference period compared to the baseline period. The spatial distribution of rainfall (−40 to 10%), evapotranspiration (−20 to 5%), surface runoff (7.8–13.1%), lateral flow (4.47 to −16.5%), and percolation (−3.3 to −10.2%) varied. The changes in the hydrologic system within the basin are greatly attributed to the combination of land use and land cover change due to rapid population growth and climate variability.

Funder

German Academic Exchange Service

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3