Formation Mechanisms of the Pacific–North American Teleconnection with and without Its Canonical Tropical Convection Pattern

Author:

Dai Ying1,Feldstein Steven B.2,Tan Benkui1,Lee Sukyoung3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

2. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

3. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Abstract

The mechanisms that drive the Pacific–North American (PNA) teleconnection pattern with and without its canonical tropical convection pattern are investigated with daily ERA-Interim and NOAA OLR data (the former pattern is referred to as the convective PNA, and the latter pattern is referred to as the nonconvective PNA). Both the convective and nonconvective positive PNA are found to be preceded by wave activity fluxes associated with a Eurasian wave train. These wave activity fluxes enter the central subtropical Pacific, a location that is favorable for barotropic wave amplification, just prior to the rapid growth of the PNA. The wave activity fluxes are stronger for the positive nonconvective PNA, suggesting that barotropic amplification plays a greater role in its development. The negative convective PNA is also preceded by a Eurasian wave train, whereas the negative nonconvective PNA grows from the North Pacific contribution to a circumglobal teleconnection pattern. Driving by high-frequency eddy vorticity fluxes is largest for the negative convective PNA, indicating that a positive feedback may be playing a more dominant role in its development. The lifetimes of convective PNA events are found to be longer than those of nonconvective PNA events, with the former (latter) persisting for about three (two) weeks. Furthermore, the frequency of the positive (negative) convective PNA is about 40% (60%) greater than that of the positive (negative) nonconvective PNA.

Funder

Chinese NSF

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3