Contributions of Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation to Global Ocean Heat Content Distribution

Author:

Hu Zeyuan1,Hu Aixue2,Hu Yongyun1

Affiliation:

1. Department of Atmosphere and Ocean Sciences, Peking University, Beijing, China

2. Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract Regional sea surface temperature (SST) mode variabilities, especially the La Niña–like Pacific Ocean temperature pattern known as the negative phase of the interdecadal Pacific oscillation (IPO) and the associated heat redistribution within the ocean, are the leading mechanisms explaining the recent global warming hiatus. Here version 1 of the Community Earth System Model (CESM) is used to examine how different phases of two leading decadal time scale SST modes, namely the IPO and the Atlantic multidecadal oscillation (AMO), contribute to heat redistribution in the global ocean in the absence of time-evolving external forcings. The results show that both the IPO and AMO contribute a similar magnitude to global mean surface temperature and ocean heat redistribution. Both modes contribute warmer surface temperature and higher upper ocean heat content in their positive phase, and the reverse in their negative phase. Regionally, patterns of ocean heat distribution in the upper few hundred meters of the tropical and subtropical Pacific Ocean depend highly on the IPO phase via the IPO-associated changes in the subtropical cell. In the Atlantic, ocean heat content is primarily associated with the state of the AMO. The interconnections between the IPO, AMO, and global ocean heat distribution are established through the atmospheric bridge and the Atlantic meridional overturning circulation. An in-phase variant of the IPO and AMO can lead to much higher surface temperatures and heat content changes than an out-of-phase variation. This result suggests that changes in the IPO and AMO are potentially capable of modulating externally forced SST and heat content trends.

Funder

U.S. Department of Energy’s Office of Science

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3