Unabated Global Ocean Warming Revealed by Ocean Heat Content from Remote Sensing Reconstruction

Author:

Su Hua1ORCID,Wei Yanan1,Lu Wenfang2ORCID,Yan Xiao-Hai3ORCID,Zhang Hongsheng4ORCID

Affiliation:

1. Key Laboratory of Spatial Data Mining and Information Sharing of Ministry of Education, The Academy of Digital China, Fuzhou University, Fuzhou 350108, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China

3. Center for Remote Sensing, College of Earth, Ocean and Environment, University of Delaware, Newark, DE 19716, USA

4. Department of Geography, The University of Hong Kong, Hong Kong 999077, China

Abstract

As the most relevant indicator of global warming, the ocean heat content (OHC) change is tightly linked to the Earth’s energy imbalance. Therefore, it is vital to study the OHC and heat absorption and redistribution. Here we analyzed the characteristics of global OHC variations based on a previously reconstructed OHC dataset (named OPEN) with four other gridded OHC datasets from 1993 to 2021. Different from the other four datasets, the OPEN dataset directly obtains OHC through remote sensing, which is reliable and superior in OHC reconstruction, further verified by the Clouds and the Earth’s Radiant Energy System (CERES) radiation flux data. We quantitatively analyzed the changes in the upper 2000 m OHC of the oceans over the past three decades from a multisource and multilayer perspective. Meanwhile, we calculated the global ocean heat uptake to quantify and track the global ocean warming rate and combined it with the Oceanic Niño Index to analyze the global evolution of OHC associated with El Niño–Southern Oscillation variability. The results show that different datasets reveal a continuously increasing and non-decaying global ocean warming from multiple perspectives, with more heat being absorbed by the subsurface and deeper ocean over the past 29 years. The global OHC heating trend from 1993 to 2021 is 7.48 ± 0.17, 7.89 ± 0.1, 10.11 ± 0.16, 7.78 ± 0.17, and 12.8 ± 0.26 × 1022 J/decade according to OPEN, IAP, EN4, Ishii, and ORAS5, respectively, which shows that the trends of the OPEN, IAP, and Ishii datasets are generally consistent, while those of EN4 and ORAS5 datasets are much higher. In addition, the ocean warming characteristics revealed by different datasets are somewhat different. The OPEN OHC dataset from remote sensing reconstruction shows a unique remote sensing mapping advantage, presenting a distinctive warming pattern in the East Indian Ocean. Meanwhile, the OPEN dataset had the largest statistically significant area, with 85.6% of the ocean covered by significant positive trends. The significant and continuous increase in global ocean warming over the past three decades, revealed from remote sensing reconstruction, can provide an important reference for projecting ocean warming in the context of global climate change toward the United Nations Sustainable Development Goals.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Distinguished Young Scholars of Fujian Province of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3