Affiliation:
1. Department of Geography, East Carolina University, Greenville, North Carolina
Abstract
Abstract
The seasonal and interannual variability of the structure, evolution, and propagation of midlatitude cyclones in the southeast United States are studied using a composite analysis. In the upper levels, the composites show that the axis of the wintertime upper-level trough remains north–south oriented and propagates eastward along 40°N, while the summertime upper-level trough has a much slower propagation at a farther north latitude and an axis that is tilted in the northeast–southwest direction. Upper-level circulation changes are consistent with a shift from wintertime “cyclonic behavior” to summertime “anticyclonic behavior” midlatitude cyclones. Significant changes in the low-level structure and precipitation patterns of midlatitude cyclones ensue from these upper-level changes. While the winter composite is characterized by eastward-propagating midlatitude cyclones that extend deep into the subtropics, the summer composite is characterized by semistationary midlatitude troughs that only briefly skirt the subtropics. Wintertime precipitation occurs only in and ahead of the surface low pressure center, whereas summertime precipitation occurs in all days of the composite. As a result, over 70% (30%) of wintertime (summertime) precipitation in the Carolinas occurs on days when midlatitude cyclones are present. The wintertime composites also show that midlatitude cyclones produce more precipitation on the windward side of the Appalachians than over the Carolinas, suggesting a rain shadow effect of the mountains.
The ENSO-related variability of the structure, evolution, and propagation of midlatitude cyclones shows the presence of a more intense and southward-displaced upper-level jet, stronger midlatitude cyclones, and more intense precipitation over a larger area during El Niño than La Niña or normal years.
Publisher
American Meteorological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献