A Climatology of the Structure, Evolution, and Propagation of Midlatitude Cyclones in the Southeast United States

Author:

Ferreira Rosana Nieto1,Hall Linwood1,Rickenbach Thomas M.1

Affiliation:

1. Department of Geography, East Carolina University, Greenville, North Carolina

Abstract

Abstract The seasonal and interannual variability of the structure, evolution, and propagation of midlatitude cyclones in the southeast United States are studied using a composite analysis. In the upper levels, the composites show that the axis of the wintertime upper-level trough remains north–south oriented and propagates eastward along 40°N, while the summertime upper-level trough has a much slower propagation at a farther north latitude and an axis that is tilted in the northeast–southwest direction. Upper-level circulation changes are consistent with a shift from wintertime “cyclonic behavior” to summertime “anticyclonic behavior” midlatitude cyclones. Significant changes in the low-level structure and precipitation patterns of midlatitude cyclones ensue from these upper-level changes. While the winter composite is characterized by eastward-propagating midlatitude cyclones that extend deep into the subtropics, the summer composite is characterized by semistationary midlatitude troughs that only briefly skirt the subtropics. Wintertime precipitation occurs only in and ahead of the surface low pressure center, whereas summertime precipitation occurs in all days of the composite. As a result, over 70% (30%) of wintertime (summertime) precipitation in the Carolinas occurs on days when midlatitude cyclones are present. The wintertime composites also show that midlatitude cyclones produce more precipitation on the windward side of the Appalachians than over the Carolinas, suggesting a rain shadow effect of the mountains. The ENSO-related variability of the structure, evolution, and propagation of midlatitude cyclones shows the presence of a more intense and southward-displaced upper-level jet, stronger midlatitude cyclones, and more intense precipitation over a larger area during El Niño than La Niña or normal years.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3