ENSO Impact on Winter Precipitation in the Southeast United States through a Synoptic Climate Approach

Author:

Qian Jian-Hua,Viner BrianORCID,Noble StephenORCID,Werth David,Li Cuihua

Abstract

The ENSO impact on winter precipitation in the Southeast United States was analyzed from the perspective of daily weather types (WTs). We calculated the dynamic contribution associated with the change in frequency of the WTs and the thermodynamic contribution due to changes in the spatial patterns of the environmental fields of the WTs. Six WTs were obtained using a k-means clustering analysis of 850 hPa winds in reanalysis data from November to February of 1948–2022. All the WTs can only persist for a few days. The most frequent winter weather type is WT1 (shallow trough in Eastern U.S.), which can persist or likely transfer to WT4 (Mississippi River Valley ridge). WT1 becomes less frequent in El Niño years, while the frequency of WT4 does not change much. WTs 2–6 correspond to a loop of eastward propagating waves with troughs and ridges in the mid-latitude westerlies. Three WTs with a deep trough in the Southeast U.S., which are WT2 (east coast trough), WT3 (off east coast trough) and WT6 (plains trough), become more frequent in El Niño years. The more frequent deep troughs (WTs 2, 3 and 6) and less frequent shallow trough (WT1) result in above-normal precipitation in the coastal Southeast U.S. in the winter of El Niño years. WT5 (off coast Carolina High), with maximum precipitation extending from Mississippi Valley to the Great Lakes, becomes less frequent in El Niño years, which corresponds to the below-normal precipitation from the Great Lakes to Upper Mississippi and Ohio River Valley in El Niño years, and vice versa in La Niña years. The relative contribution of the thermodynamic and dynamic contribution is location dependent. On the east coast, the two contributions are similar in magnitude.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3