Affiliation:
1. National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom
2. Department of Meteorology, University of Reading, Reading, United Kingdom
Abstract
Abstract
In this study, the atmospheric component of a state-of-the-art climate model [the Hadley Centre Global Environment Model, version 2–Earth System (HadGEM2-ES)] has been used to investigate the impacts of regional anthropogenic sulfur dioxide emissions on boreal summer Sahel rainfall. The study focuses on the transient response of the West African monsoon (WAM) to a sudden change in regional anthropogenic sulfur dioxide emissions, including land surface feedbacks but without sea surface temperature (SST) feedbacks. The response occurs in two distinct phases: 1) fast adjustment of the atmosphere on a time scale of days to weeks (up to 3 weeks) through aerosol–radiation and aerosol–cloud interactions with weak hydrological cycle changes and surface feedbacks and 2) adjustment of the atmosphere and land surface with significant local hydrological cycle changes and changes in atmospheric circulation (beyond 3 weeks).
European emissions lead to an increase in shortwave (SW) scattering by increased sulfate burden, leading to a decrease in surface downward SW radiation that causes surface cooling over North Africa, a weakening of the Saharan heat low and WAM, and a decrease in Sahel precipitation. In contrast, Asian emissions lead to very little change in sulfate burden over North Africa, but they induce an adjustment of the Walker circulation, which leads again to a weakening of the WAM and a decrease in Sahel precipitation. The responses to European and Asian emissions during the second phase exhibit similar large-scale patterns of anomalous atmospheric circulation and hydrological variables, suggesting a preferred response. The results support the idea that sulfate aerosol emissions contributed to the observed decline in Sahel precipitation in the second half of the twentieth century.
Publisher
American Meteorological Society
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献