Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
The inclusion of parameterized Nordic Sea overflows in the ocean component of the Community Climate System Model version 4 (CCSM4) results in a much improved representation of the North Atlantic tracer and velocity distributions compared to a control CCSM4 simulation without this parameterization. As a consequence, the variability of the Atlantic meridional overturning circulation (AMOC) on decadal and longer time scales is generally lower, but the reduction is not uniform in latitude, depth, or frequency–space. While there is dramatically less variance in the overall AMOC maximum (at about 35°N), the reduction in AMOC variance at higher latitudes is more modest. Also, it is somewhat enhanced in the deep ocean and at low latitudes (south of about 30°N). The complexity of overturning response to overflows is related to the fact that, in both simulations, the AMOC spectrum varies substantially with latitude and depth, reflecting a variety of driving mechanisms that are impacted in different ways by the overflows. The usefulness of reducing AMOC to a single index is thus called into question. This study identifies two main improvements in the ocean mean state associated with the overflow parameterization that tend to damp AMOC variability: enhanced stratification in the Labrador Sea due to the injection of dense overflow waters and a deepening of the deep western boundary current. Direct driving of deep AMOC variance by overflow transport variations is found to be a second-order effect.
Publisher
American Meteorological Society
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献