Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4

Author:

Yeager Stephen1,Danabasoglu Gokhan1

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract The inclusion of parameterized Nordic Sea overflows in the ocean component of the Community Climate System Model version 4 (CCSM4) results in a much improved representation of the North Atlantic tracer and velocity distributions compared to a control CCSM4 simulation without this parameterization. As a consequence, the variability of the Atlantic meridional overturning circulation (AMOC) on decadal and longer time scales is generally lower, but the reduction is not uniform in latitude, depth, or frequency–space. While there is dramatically less variance in the overall AMOC maximum (at about 35°N), the reduction in AMOC variance at higher latitudes is more modest. Also, it is somewhat enhanced in the deep ocean and at low latitudes (south of about 30°N). The complexity of overturning response to overflows is related to the fact that, in both simulations, the AMOC spectrum varies substantially with latitude and depth, reflecting a variety of driving mechanisms that are impacted in different ways by the overflows. The usefulness of reducing AMOC to a single index is thus called into question. This study identifies two main improvements in the ocean mean state associated with the overflow parameterization that tend to damp AMOC variability: enhanced stratification in the Labrador Sea due to the injection of dense overflow waters and a deepening of the deep western boundary current. Direct driving of deep AMOC variance by overflow transport variations is found to be a second-order effect.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference73 articles.

1. Interior pathways of the North Atlantic meridional overturning circulation;Bower;Nature,2009

2. An overflow parameterization for the ocean component of the community climate system model. National Center for Atmospheric Research Tech;Briegleb,2010

3. Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3;Bryan;J. Climate,2006

4. Deep western boundary current east of abaco: Mean structure and transport;Bryden;J. Mar. Res.,2005

5. Multi-decadal thermohaline variability in an ocean–atmosphere general circulation model;Cheng;Climate Dyn.,2004

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3