Understanding the Sensitivity of the North Atlantic Subpolar Overturning in Different Resolution Versions of HadGEM3‐GC3.1

Author:

Petit T.1ORCID,Robson J.1ORCID,Ferreira D.2ORCID,Jackson L. C.3ORCID

Affiliation:

1. Department of Meteorology National Centre for Atmospheric Science University of Reading Reading UK

2. Department of Meteorology University of Reading Reading UK

3. Hadley Centre Met Office Exeter UK

Abstract

AbstractThe Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate but is not simulated consistently across models or model resolutions. Here, we use a hierarchy of the global coupled model HadGEM3‐GC3.1, with ocean resolutions of 1°, ¼°, and 1/12°, to evaluate the subpolar AMOC and its sensitivity to horizontal resolution. In line with observations, the models show that the mean overturning and surface forced water mass transformation (SFWMT) are concentrated in the eastern subpolar gyre rather than in the Labrador Sea. However, the magnitude of the overturning along the OSNAP line at medium and high resolutions is 25% and 40% larger than in the observations, respectively. This disagreement in overturning strength is noted for both OSNAP East and OSNAP West, and is mainly due to anomalously large SFWMT rather than anomalously large interior mixing or overflow transport from the Nordic Seas. Over the Labrador Sea, the intensification of SFWMT with resolution is explained by a combination of two main biases. Anomalously warm surface water enhances heat loss and reduces the extension of marginal sea ice, which increases the surface density flux over the boundary of the basin. A bias in salinity leads to anomalously dense surface water that shifts the outcropping area of the AMOC isopycnal and results in intense dense water formation along the boundary of the basin at medium and high resolutions. Thus, our analysis sheds light on a range of model biases responsible for large overturning over the Labrador Sea in climate models.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3