Robust Surface Warming in Offshore China Seas and Its Relationship to the East Asian Monsoon Wind Field and Ocean Forcing on Interdecadal Time Scales

Author:

Cai Rongshuo1,Tan Hongjian2,Kontoyiannis Harilaos3

Affiliation:

1. Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, China

2. Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen, and State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Hellenic Center for Marine Research, Attica, Greece

Abstract

Robust surface warming with distinct interdecadal variations has been observed in the offshore area of China and adjacent seas (hereafter, offshore China) during winter and summer of the period 1958–2014. Acceleration of this warming during 1980–99 at rates greater than the global mean warming rate was accompanied by a weakening of the East Asian monsoon (EAM) and a strengthening of the west Pacific subtropical high (WPSH). It was determined that the sea surface temperature (SST) variation in offshore China correlates very well with changes in the EAM wind on interdecadal time scales. It was also established that the enhanced oceanic lateral heat transfer, mainly attributed to the leading empirical orthogonal function (EOF1), weakening EAM wind mode, has a central role in robust interdecadal winter surface warming in offshore China. However, except for the effect of oceanic lateral heat transfer, the increased surface heat flux through radiative heating related to the third EOF (EOF3) strengthening EAM anticyclone wind mode (WPSH) in summer appears to have a greater contribution to interdecadal summer surface warming in offshore China. These results help clarify the relationship between interdecadal SST variations, EAM, oceanic currents, and sea surface flux in offshore China.

Funder

the National Key Research and Development Program of China

the Grant China Clean Development Mechanism (CDM) Fund Project

the Chinese Special Scientific Research Project for Public Interest

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3